ISSN: 2490-3477

E-ISSN: 2490-3485

TTTP

Traffic and Transport Theory and Practice

Journal for Traffic and Transport Research and Application

Vol. 1 No. 1 (2016): TTTP - APEIRON

Vedran Vukšić, Tijana Ivanišević

Illustration of Typical Situations of Fatal Traffic Accidents Involving Cyclists Within the Territory of the City of Belgrade

Original scientific paper

DOI: 10.7251/JTTTP1601005V

Abstract

This paper analysed traffic accidents involving cyclists that occurred within the territory of the City of Belgrade, based on traffic technical forensics case files, over the period from 2009 to 2013. Within the analysed sample, identified and illustrated are typical situations in which there are fatal injuries of cyclists in traffic.

Keywords: road safety, traffic accidents, safety of cyclists, belgrade, typical situations.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.